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Abstract : In this paper we study the elementary properties of double graphs, i.e. of graphs which 

are the direct product of a simple graph G with the graph obtained by the complete graph K2 adding a 

loop to each vertex. 
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1. INTRODUCTION 

In [18] it was observed that the binary strings of length  + 1 without zigzags, i.e. without 010 and 

101 as factors, can be reduced to the Fibonacci strings, i.e. binary strings without two consecutive 1's, of 

length n. The set of Fibonacci strings can be endowed with a graph structure saying that two strings are 

adjacent when they differ exactly in one position. The graphs obtained in this way are called Fibonacci 

cubes [12] and have been studied in several recent papers. We wondered if the set of all binary strings 

without zigzags could be endowed with some graph structure related in some way with Fibonacci cubes. 

One interesting such graph structure is the one induced by the graph structure of Fibonacci strings, that is 

the one obtained defining the adjacency saying that two binary strings without zigzags are adjacent if and 

only if the corresponding Fibonacci strings are adjacent as vertices of the Fibonacci cube. The resulting 

graph can be build up taking two distinct copies of the Fibonacci cube and joining every vertex  in 

one component to every vertex ' in the other component corresponding to a vertex  adjacent to  in the 

first component. At this point it was straightforward to observe that this is a general construction which 

can be performed on every simple graph. We called double graphs all the graphs which can be obtained 

in such a way. Since the class of double graphs with this construction turned out to have several interesting 

properties, we decided to write this paper as an elementary introduction to such graphs that perhaps 

deserve to be better known. 

2. Definitions 

In this paper we will consider only finite simple graphs (i.e. without loops and multiple edges). As 

usual V(G) and E(G) denote the set of vertices and edges of G, respectively, and adj denote the adjacency 

relation of G. For all definitions not given here see [1,5,9,13,17]. 

The direct product of two graphs G and H is the graph G × H with V (G×H)=V(G) × V (H) and 

with adjacency defined by (v
1
, w

1
) adj (v

2
, w

2
) if and only if v

1 
adj v

2 
in G and w

1 
adj w2 in H. 

The total graph T
n
, on  vertices is the graph associated to the total relation (where every vertex is 

adjacent to every vertex). It can be obtained from the complete graph K
n 
by adding a loop to every vertex. 

In [13] it is denoted by K s . 
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We define the double of a simple graph G as the graph [G] = G × T2. Since the direct product of 

a simple graph with any graph is always a simple graph, it follows that the double of a simple graph is still 

a simple graph. 

In [G] we have (v, h) adj (w, k) if and only if v adj w in G. Then, if V (T2) = {0, 1}, we have that 

G0 {(v, 0) : v V (G)} and G1 {(v,1) : v V (G)} are two subgraphs of [G] both isomorphic to G 

such that G0 ∩ G1  and G0 U G1 is a spanning subgraph of [G]. Moreover we have an edge between 

(v. 0) and (w, 1) and similarly we have an edge between (v, 1) and (w, 0) whenever adj  in G. We will 

call {G0, G1} the canonical decomposition of [G]. See Fig. I for some examples. 

From the above observations it follows that if G has  vertices and m edges then [G] has 2  

vertices and 4  edges. In particular degD[G] (v, k ) 2 degG (v). 

The lexicographic product (or composition) of two graphs G and H is the graph G o H with V (G) 

× V (H) as vertex set and with adjacency defined by (v
1
, w

1
) adj (v

2
, w

2
) if and only if v

1 
= v

2 
and w

1 
adj 

w2 in H or v1 adj v2 in G. The graph G o H can be obtained from G substituting to each vertex u of G a 

copy H
v 
of H and joining every vertex of H

v 
with every vertex of H

w 
whenever  and  are adjacent in G 

[13, p. 185]. 

Lemma 1. For any graph G we have G × T
n 

= G o N
n
, where N

n 
is the graph on  vertices 

without edges. 

Proof. For simplicity consider T
n  

and N
n  

on the same vertex set. Then the 

function f : G Tn G o Nn , defined by (v, k) = (v, k) for every (v, k) V (G Tn ) , is a graph 

isomorphism. Indeed, since N
n 
has no edges, we have that (v. h) adj (w, k) in G o N

n 
if and only if  adj 

 in G. 

From Lemma 1 it immediately follows that: 

Proposition 2. For any graph G on n vertices, [G] = G o N2 and [G] is n-partite (Fig. 2). 

We will write 2[G] for the double of the double of G. More generally we will have the graphs 

Dk [G] G T G o N  , for every 
k k k 

The given definition of double graph can be generalized considering the operator 
k
defined by 

Dk [G]  G Tk for every simple graph G. For Lemma 1 it is also 
k
[G] = G o N

k 
for every simple graph 

G. 

 

 2 
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Moreover the powers of are instances of these generalized operators. Specifically 

Dk [G] [G] for every simple graph G. Many of the properties proved in the sequel for  can be 

immediately extended to 
k
. 

3. Basic properties of double graphs 

In this section we will review some elementary properties of double graphs. 

Proposition 3. The double [G] of a graph G on n vertices contains at least 2n subgraphs isomorphic 

to G itself. 

Proof. Let {G
0
. G

1
} be the canonical decomposition of [G]. Let S

0 
be any subset of V (G

0
) and 

let S1 be the subset of V (G1) corresponding to the complementary set of S0. Then the graph induced by 

S0 U S1 is isomorphic to G. 

Proposition 4. For any graph G, G is bipartite if and only if [G] is bipartite. 

Proof. Let {G
0
. G

1
} be the canonical decomposition of [G]. If G is bipartite then also G

0 
and G

1 

are bipartite. Let{V, W} be a bipartition of G and (V0. W0), (V1, W1) be the corresponding bipartitions of 

G
0 
and G

1
, respectively. Every edge of [G] has one extreme in V

0 U V1 
and the other in W

0 U W1
, and 

hence also [G] is bipartite. 

Conversely, if [G] is bipartite then it does not contain odd cycles. Hence also the subgraph 

G0  G does not contain odd cycles and then it is bipartite. 

A vertex cut of a graph G is a subset S of V (G) such that G/S is disconnected. The connectivity 

(G) of G is the smallest size of a vertex cut of G. A point of articulation (resp. bridge) is a vertex (resp. 

edge) whose removal augments the number of connected components. A block is a connected graph 

without articulation points. 

Proposition 5. For any graph G  K1 the following properties hold: 

1. G is connected if and only if [G] is connected. 

2. If G is connected then every pair of vertices of [G] belongs to a cycle. 

3. Every edge of [G] belongs to a 4-cycle. 

4. In a double graph there are neither bridges nor articulation points. 

5. If G is connected then [G] is a block. 

6. The connectivity of [G] is ( [G]) = 2 (G). 

Proof. Let (G0, G1) be the canonical decomposition of [G]. 

1. If G is connected also G0 and G1 are connected. Hence, we have only to prove that any 

vertex (v, 0) of G0 is connected with any vertex of G1. Let ' be any vertex adjacent to . 

Then (v. (0) is adjacent to (v', 1). Since G1 is connected there exists a path which connects 

(v', 1), and hence (v, 0), to any vertex of G1. Conversely, if G is disconnected then also 

[G] is disconnected. 
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'1 

K1 

2. Let (v, 0) and (w, 0) be two distinct vertices in Go. Leto be a path connecting these two 

vertices and lety, be the corresponding path connecting the vertices (v, 1) and (w, 1) in 

G1. Let (v', 1) be the vertex following (v. 1) on y1. (w', 1) be the vertex preceding (w, 1) 

on y1, and let '1 be the sub-path of y1from (w', 1) to (v'. 1). Then {(w, 0), (w', 1)} 

U U {(v', 1), (v, 0)} is a cycle containing (v. 0) and (w, 0). A similar argument holds 

when we consider two distinct vertices in G1 or two vertices (v, 0) and (w, 1) with v 

Finally, in the case of two vertices (v. 0) and (v. 1), choosing any vertex ' adjacent to v, 

we have that (v, 0), (v', 1), (v, 1), (v'. 0), (1, 0) is a cycle containing both the vertices. 

3. Every edge vw of G generates the 4-cycle (v. 0), (w, 0), (v, 1), (w, 1), (u, 0) in [G] and 

every edge of [G] belongs to one such cycle. 

4. An edge vw of a connected graph H is a bridge if and only if no cycle of H contains both 

and w [17]. Here, without loss of generality, we can suppose G connected. Since every 

edge of [G] belongs to a cycle it follows that [G] has no bridges. Similarly, by property 

2, G has no articulation points. 

5. It follows from properties 1 and 4. 

6. Let S be a vertex cut of [G] with minimum size. The sets S0 S ∩V (G0 ) and 

S1 S ∩V (G1 ) are vertex cuts of G
0 

and G
1
, respectively. Then | S0 |,| S1 | k (G) and 

hence k (D[G]) 2k (G) . Conversely, let  be a vertex cut of G and S
0 

and S
1 

be the 

corresponding sets in G
0 

and G
1
, respectively. Then S

0 U S1 
is a vertex cut of [G] and 

hence ( [G]) 2 (G). 

A connected graph G is Eulerian if it has a closed trial containing all the edges of G. Eulerian 

graphs are characterized as the even connected graphs, where an even graph is a graph in which every 

vertex has even degree. A graph G is Hamiltonian if it has a spanning cycle. 

Proposition 6. For any graph G the following traversability properties hold: 

1. If G is connected then [G] is Eulerian. 

2. If G is Hamiltonian then also [G] is Hamiltonian. 

Proof. 1. The double of a connected graph is connected and double graphs are always even. 

2. Let {G0, G1) be the canonical decomposition of [G]. Let y be a spanning cycle of G,  be 

an edge of y and y' be the path obtained from y by removing the edge . Let ' be the corresponding 

path in G , for i = 0, 1. Then ' U{(w, 0),(v,1)}U  ' U{(w,1),(v, 0)} is a spanning cycle of [G]. 
i 0 1 

Proposition 7. For any graph G1 and G2 the following properties hold: 

1. [G
1 
×G

2
] = G × [G

2
] = [G

1
] × G

2
, 

2. [G1 o G2] = G1o [G ] 

Proof. These identities are consequence of the associative property of the direct product and of 

the lexicographical product, respectively. 

From the definition of the double of a graph it follows immediately that: 

Proposition 8. Let A be the adjacency matrix of G. Then the adjacency matrix of [G] is 

 

D[ A] 

0 U 

w. 

A A 1 1 
A 

A A 1 1 

i 
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A1 X 

X  A2 

The rank  (G) of a graph G is the rank of its adjacency matrix. Then from the above proposition 

it follows that: 

Proposition 9. For any graph G, ( [G]) = (G). 

In the sequel we will use the property that two graphs are isomorphic if and only if their adjacency 

matrices are similar by means of a permutation matrix. 

Let G
1 

and G
2 

be two graphs. The sum G
1 

+ G
2 

of G
1 

and G
2 

is the disjoint union of the two 

graphs. The complete sum G
1 

 G
2 

of G
1 

and G
2 

is the graph obtained from G
1
+ G

2 
by joining every 

vertex of G1 to every vertex of G2. A graph is decomposable if it can be expressed as sums and complete 

sums of isolated vertices [17, p. 183]. 

Proposition 10. For any graph G1 and G2 the following properties hold: 

1. [G1+G2] = [G1] + [G ]. 

2. [G
1 

 G
2
] = [G

1
] [G

2
]. 

3. the double of a decomposable graph is decomposable. 

Proof. The first two properties can be proved simultaneously as follows. Let A1 and A2 be the 

 

adjacency matrices of G
1 
and G

2
, respectively. Then is the adjacency matrix of G

1 
+ G

2 
when 

 is the null matrix  and of G1  G2 when  is the matrix  all of whose entries are l's. Then the 

adjacency matrix of the double is 
 

A1 X A1 X 

X A2 X A2 

A1 X A1 X 

X A2 X A2 

Interchanging first the second and the third column and then the second and the third row we 

obtain the matrix 
 

A1 A1 X X 

A1 A1 X X 

X X A2 A2 

X X A2 A2 

which is the adjacency matrix of [G
1
] + [G

2
] when  =  and of [G

1
]  [G

2
] when  = . These 

properties are also implied by the right-distributive laws of the lexicographic product [13, pp. 185, 186]. 

Finally the third property follows from the fact that preserves sums and complete sums and [ 1] = N2 

=K
1
+K

1
. 

Examples. 1. If N
n 

is the graph on  vertices without edges, then [N
n
] = N

2n
. 

2. Let K
m,n 

be a complete bipartite graph. Then [K
m,n

] = [N
m 

 N
n
] = [N

m
]  [N

n
] = 

N
2m 

 N
2n 

= K
2m.2n

. Similarly, if K
m1

.....,
mn 

is a complete -partite graph we have [K
m1

.....
mn

] = K
2m1

, .... 
2mn

. 

In particular, if K
m(n) 

is the complete -partite graph K
n
,......,

n
, then [K

m(n)
]=K

m(2n)
. Since K

n 
= K

n(1) 
it 

follows that the double of the complete graph K
n 
is the hyperoctahedral graph H

n 
= K

n(2)
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2 A 

2 A 

 I 2 A 

   

 

 

3. For n 2 , let Kn  
be the graph obtained by the complete graph K

n 
deleting any edge. Then 

Kn 
= N

2 
 K

n–2 
and [ Kn 

] = [N
2
] [K

n–2
] = N

4 
 H

n–2
, that is [ Kn 

] = K
4,2, ....... ,2 

4. Let G be a group and let  be a set of generators for G such that (i) if x  then x , and 

(ii) 1 . The Cayley graph Cay(G, ) is the simple graph whose vertices are the elements of G and 

where  adj  if and only if x 

×C2) = [Cay(G, )]. 

(see [1]). Let now C2 be a cyclic group of order 2. Then Cay(G×C2, 

A graph G is circulant when its adjacency matrix  is circulant, i.e. when every row distinct from 

the first one, is obtained from the preceding one by shifting every element one position to the right. Let  

( 1..... n
) be the circulant graph where ( 1.... n

) is the first row of the adjacency matrix (for a suitable 

ordering of the vertices). 

Proposition 11. A graph G is circulant if and only if [G] is circulant. Specifically 

[ ( 
1
,..., 

n
)] = (

1
,......

n
,

1
.....,

n
), 

Let  [G] = G × K2 be the canonical double covering of G[20]. 

Proposition 12.  and  commutes, that is [ [G]] = [ [G]] for every graph G. 

Proof. The associativity and the commutativity of the direct product implies that 

D[R[G]] R[G]  T2 G K2 T2 G T2 K2 D[G] K2 R[D[G]]. 

Let [G] 
 

 

T2 be the strong double of G, and let G be the complement of G. 
 

 
 

Proposition 13. For every graph G, [ G ] = [G] . 

Proof. If A is the adjacency matrix of G, the adjacency matrix of [G] is 

 

A[G] 

 

Then 

 

A[G] 

 

that is A([G]) J I A([G]) A[G]. The proposition follows. 

4. Spectral properties of double graphs 

The eigenvalues, the characteristic polynomial and the spectrum of a graph are the eigenvalues, 

the characteristic polynomial and the spectrum of its adjacency matrix [5, p. 12]. 

Proposition 14. The characteristic polynomial of the double of a graph  on  vertices is 

(D[G];  ) (2 )n  (G; / 2) 

In particular the spectrum of [G] is {0..... 0, 2λ1,...... 2λ
n
} where λ1, ...... λn 

are the eigenvalues 

of G. 

Proof. By Proposition 8 it follows that 
 

An integral graph is a graph all of whose eigenvalues are integers [5. p. 266]. 

1 y 

G 

 

  

 

 

 

A(G)  A(G) 

A(G) A(G) 

J 

J 

I 

I 

A J I A 

A J I A 
J I 

A I A 

I A A 
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Proposition 15. A graph G is integral if and only if [G] is an integral graph. 

Proof. Since the characteristic polynomial of a graph is monic with integer coefficients its rational 

roots are necessarily integers. Then the claim immediately follows from Proposition 14. 
Examples. 1. Since the spectrum of K is (–1)n–1(n–1)1 the spectrum of H = [K ] is (–2)n–1

 
n n n 

0n(2n–2)1 where –2 has multiplicity n–1 and 0 has multiplicity . 

2. The Petersen graph in an integral graph with spectrum (–2)4153¹. Then also its double is an 

integral graph whose spectrum is (–4)40102561. 

3. Since the characteristic polynomial of the path P
n 
is (P

n
; λ) = U

n 
(λ/2), where the U

n 
(λ)'s are 

the Chebyshev polynomials of the second kind, it follows that the characteristic polynomial of [P
n
] is 

( [P ]; λ) = (2λ)n U (λ/4). 
n n 

4. Let c3 (G) be the number of triangles (i.e. 3-cycles) of G. If A is the adjacency matrix of G then 

c (G) 1 tr( A3 ) 1 ( 3 .... 3 ) where λ ...... ,λ are the eigenvalues of . Then Proposition 14 implies 
3 6 6 1 n 1 n 

that c
3
( [G])=8.C

3
(G). 

Two graphs are cospectral when they are non-isomorphic and have the same spectrum [1, p. 12; 

5, p. 156]. From Proposition 14 and Theorem 31 we have the following property. 

Proposition 16. Two graphs G1 and G2 are cospectral if and only if their doubles [G1] and 

[G2] are cospectral. 

Given two cospectral graphs G1 and G2, it is always possible to construct an infinite sequence of 

cospectral graphs. Indeed k[G
1
] and [G

2
] are cospectral for every k  ℕ . 

5. Strongly regular graphs 

A graph  is -regular if every vertex has degree . 

Proposition 17. A graph G is -regular if and only if [G] is 2 -regular. 

A simple graph G is strongly regular with parameters ( , , λ, µ) when it has  vertices, is - 

regular, every adjacent pair of vertices has λ common neighbors and every non-adjacent pair has µ 

common neighbors. For instance the complete graph K
n 
is (n,n–1, n–2, 0)-strongly regular, the complete 

bipartite graph K
n,n 

is (2n, n, 0, n)-strongly regular and the hyperoctahedral graph H
n 
is (2n, 2n–2,2n–4, 

2n–2)-strongly regular. 

Connected strongly regular graphs, distinct from the complete graph, are characterized [5, p. 103] 

as the connected regular graphs with exactly three distinct eigenvalues. Hence if G is strongly regular its 

double is not necessarily strongly regular. For instance the Petersen graph is a (10, 3, 0, 1)-strongly 

regular graph with the three distinct eigenvalues –2, 1. 3, but its double is not strongly regular having the 

four distinct eigenvalues –4, 0, 2, 6. Strongly regular double graphs can however be completely 

characterized, as we will do in Proposition 19. To give such a characterization we need the following 

properties. 

Strongly regular graphs with one zero eigenvalue are characterized as follows [5. p. 163]: a 

regular graph G has eigenvalues k, 0, λ3 if and only if the complement of G is the sum of 1–k/λ3 complete 

graphs of order –λ3. Equivalently, a regular graph has three distinct eigenvalues of which one is zero if 

and only if it is a multipartite graph K
m(n)

. 

The only disconnected strongly regular graphs are finite sums of complete graphs of the same 

order [4]. 

Lemma 18. A complete multipartite graph K
m(n) 

is a double graph if and only if  is even. In 

particular, the complete graph K
n 

is never a double graph. 
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1  2 n 

We can now characterize the strongly regular double graphs. 

Proposition 19. For any graph G the following characterizations hold: 

1. [G] is a connected strongly regular graph if and only if G is a complete multipartite graph K
m(n)

 

2. [G] is a disconnected strongly regular graph if and only if G is a completely 

disconnected graph N
n
. 

Proof. 1. If G = K
m(n) 

then [G]=K
m(2n)

. Conversely, suppose that [G] is connected and strongly 

regular. Since [G] cannot be a complete graph, it has 3 distinct eigenvalues, one of which is zero. Then 

it is a complete multipartite graph K
m(2n) 

and consequently G is the complete multipartite graph K
m(n)

. 

2. If [G] is a disconnected strongly regular graph then it is a sum of complete graphs of the same 

order. Since the complete graph is never a double graph, the only possibility is that [G] = N2n 
and hence 

G = N
n
. 

In general double graphs are not characterized by their spectrum. However, since this is true for 

complete bipartite graphs, we have that: 

Proposition 20. Strongly regular double graphs are characterized by their spectrum. 

6. Complexity and Laplacian spectrum 

Let  (G) be the complexity of the graph G. i.e. the number of its spanning trees. It is well known 

[3] that  

 

t(G) 

 

 

...(1) 

where  is the number of vertices of G, L is the Laplacian matrix of G and , as before, is the n×n matrix 

all of whose entries are equal to 1. 

Theorem 21. The complexity of the double of a graph G on n vertices with degrees d1, d2, ..... dn 
is 

t(D[G] 4n 1 d d .....d t(G). ...(2) 

Proof. Let v1....vn 
be the vertices of G and d1, .... dn 

their degrees. As known the Laplacian matrix 

 of  is equal to D–A where D is the diagonal matrix diag(d1,...., dn
) and  is the adjacency matrix of . 

Then the Laplacian matrix of [G] is 
 

D[L] 

 

Hence it follows that 

 
t(D[G]) 

...(3) 

 

Subtracting the first row to the second row and then adding the second column to the first one, we 

have 

 
t(D[G]) 

 

Then 

1 4n 
t(D[G]) 

4n2 
| 2D 

and the theorem follows. 

2 A 2J |.| 2D | | L J |.| D |  4n 1 | D \ t(G) 
4n2 

n2 

1 
det(L J ), 

D[D] D[ A] 
  

  

     

     

 

(2n)2 

   

   

  

  

 

4n2 

   

 

A J 1 2D 2 A 2J A J 

2D 4n2 O 2D 
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, 

2k i 

n n 

n n 

n 

1 n 

k 

n 

As an immediate consequence we have the following: 

Theorem 22. The complexity of the double of a -regular graph G on  vertices is 

t(D[G] 4n 1 knt(G). 

 

 

...(4) 

Examples. 1. The double of the complete graph K
n 
is the hyperoctahedral graph H

n
. Since K

n 
is 

(n–1)-regular, (4) implies that (H ) = 4n–1 (n–1)n 
 (K ) = 4n–1(n–1)n nn–2. 

n n 

2. Let P
n 

be the path on a vertices, with n 2 . Then ( [P ]) = 4n–12n–2 (P ) = 23n–4
 

3. Let C
n 

be the cycle on  vertices, with n 3 . Then ( [C ]) = 4n–12n 
 (C ) = 23n–2n. 

4. Let F =K P be a 4 , with n=2. Then ( [P ]) = 4n+1 3n–2 (F ). Sincer (F ) = 2n, where 
n 1 n n n n 

the  's are the Fibonacci numbers [7], it follows that ( [F ]) = 4n+1 3n–2 2n. 

Since any tree has only one spanning tree, the second example can be generalized as follows: 

Theorem 23. Let  be a tree on  vertices with degrees d1,...... dn
. Then 

t(D[T ] 4n 1 d .....d . ...(5) 

It follows that the complexity of the double of a tree depends only on the degrees of the vertices 

of the tree itself. For instance, the graphs [T1] and [T2] in Fig. 3 have the same number  =73728 of 

spanning trees, because they are the double of two trees T1 and T2 on seven vertices with the same 

distribution of degrees (3, 3, 2, 1, 1, 1, 1). Since T1 and T2 are not isomorphic, [T1] and [T2] are non- 

isomorphic graphs too (by Theorem 31, as we shall see in Section 8). Finally, using identity (3), the 

following proposition can be proved. 

Proposition 24. Let G be a graph on n vertices with degrees d
1
, d

2
,.....d

n 
and let {λ

1
,  ,λ

n
] be its 

Laplacian spectrum. Then the Laplacian spectrum of [G] is {2d1,.....2d
n
, 2λ1,  2λ

n
}. In particular, G 

has an integral Laplacian spectrum if and only if the same holds for [G]. 

 

7. Independent sets 

An independent set of vertices of a graph G is a set of vertices in which no pair of vertices is 

adjacent. Let [G] be the set of all independent subsets of size  of G and let 
k 

(G) be its size. The 

independence polynomial of G is defined as 

I (G; x) 
 

 

 

k 0 s k [G ] 

x|S| i (G)xk . 
k 0 

Proposition 25. For any graph  we have k[D[G]]  k[G] where 2 = {0, 1}. In particular 

ik (D[G] k (G) and ( [G]; ) = (G, 2 ). 
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k 

Proof. Let the vertices of G be linearly ordered in some way. Let S = {(v1, w1) ..... (vk
, w

k
)) be an 

independent set of [G] G × T
2
. Since T

2 
is a total graph, it follows that π

1 
(S) = {v

1
, ...... v

k
) is an arbitrary 

independent subset of G and π2(S) is equivalent to an arbitrary binary sequence (w1,..... wk
) of length  

(where the order is established by the order of π1 (S) induced by the order of V (G)). The claim follows. 

The (vertex) independence number α(G) of a graph G is the maximum size of the independent 

sets of vertices of G. Equivalently, α(G) is the degree of the polynomial  (G, ). Then Proposition 25 

implies the following: 

Proposition 26. For any graph G we have that α( [G]) = 2α(G). 

8. Morphisms 

A morphism f : G between two graphs G and H is a function from the vertices of G to the 

vertices of H which preserves adjacency (i.e.  adj  implies ( ) adj ( ), for every ,  V(G)) [8,10]. 

An isomorphism between two graphs is an invertible morphism. 

Let Hom(G, H) be the set of all morphisms from G to H and let 2V[G] be the set of all functions 

from V(G) to 2 = {0, 1}. 

Lemma 27. For every graph G and H. Hom(G. [H]) = Hom(G, H) × 2V[G]. 

Proof. From the universal property of the direct product (in the categorical sense [2]) we have 
Hom(G, G × G ) = Hom(G, G ) × Hom(G, G ). Since [G]=G × T and Hom(G, T ) = 2V[G], the lemma 

1 2 

follows. 
1 2 2 2 

A -walk, or a walk with  steps, in a graph G is a sequence v1, v2 ........ 
v

k 
of vertices of G such that 

v
i 
adj v

i 
+1 for = 1.....k–1. A -walk is closed when v

k 
adj v

1
. Then a -walk is a morphismy y: pk 

 

while a closed -walk is a morphism : Ck G. . Let w
k
(G) and wk (G) be the number of all -walks and 

 

closed -walks of , respectively. Hence 
k 

(G) = |Hom(P
k
, G) and wk (G) = |Hom(C

k
, G). Lemma 27 

immediately implies the following: 

Proposition 28. For any graph G the number of k-walks and closed -walks on [G] are w
k
(D[G]) 

= 2kw (G) and wk ( [G])=2k 
wk (G). 

To prove Theorem 31 we recall the following theorems: 

Theorem 29 (Lovász [15.16]). Two graphs G1 and G2 are isomorphic if and only if for every 

graph G the number of morphisms from G to G1 is equal to the number of morphisms from G to G2. 

Theorem 30 (Imrich and Klavžar [13, p. 190]). If G oH  G ' o H ' and |V (H) | = |V(H')| then 

H  H ' and G  G ' . 

We can now prove the following: 

Theorem 31. Two graphs G
1 
and G

2 
are isomorphic if and only if their doubles  [G

1
] and [G

2
] 

are isomorphic. 

Proof. The claim is an immediate consequence of Theorem 30. However, it is interesting to 

observe that it is also a consequence of Lovasz's theorem [10]. Indeed, if two graphs are isomorphic it is 

clear that their doubles are isomorphic too. Conversely, if [G1] and [G2] are isomorphic then |Hom(G, 
[G ])| = |Hom(G, [G ])| for every graph G. From Lemma 27 it follows that |Hom(G, G ).2|V[G]|=|Hom(G, 

1 2 1 

G )|.2|V[G], that is |Hom(G, G )| = |Hom(G, G ), for every graph G. Hence, by Lovasz's theorem, G and 
2 1 2 1 

G2 are isomorphic. 

 

G 
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m m 

We now extend  to morphisms in the following way: for any graph morphism f : G let 

D[ f ] : D[G] D[H ] be the morphism defined by [ ](v, k) = ( (v), k) for every (v, k) D[G] . In this 

way is an endofunctor of the category of finite simple graphs and graph morphisms. 

A morphism r : G H between two graphs G and H is a retraction if there exists a morphism : 

H  G such that  =  o  =1
H
. If there exists a retraction r : G 

a functor it preserves retractions and retracts. 

then H is a retract of G. Since is 

Proposition 32. Every graph G is a retract of its double. More generally every retract of G is also 

a retract of [G]. 

Proof. Consider the morphisms r : D[G] G and s : G D[G] defined by (v, k) =  for every 

(v, k)  V( [G]) and s(v) = (v, 0) for every v  V (G). Then , which is the projection of G × T2 on G, 

is a retraction. The second part of the proposition follows from the fact that  is a functor and the 

composition of retractions is a retraction. 

Let π be a partition in independent classes of G. Then the quotient G/π is the graph whose 

vertices are the classes of π and  adj  when there exist two vertices v  and w  Y adjacent in G. 

The kernel of a graph morphism : G H is the partition induced from on the vertices of G. Clearly the 

kernel of a graph morphism is a partition in independent blocks. 

Proposition 33. For every graph G let : [G] G be the projection on G and let be its kernel. 

Then [G]/π = G. 

Proposition 34. For every graph G
1 

and G
2
, G

1 
× G

2 
is a retract of [G

1
] × [G

2
]. 

Proof. From Proposition 7 it follows that [G ] × [G ] = 2[G × G ]. Then the claim is implied 
1 2 2 

by Proposition 32. 

A (proper) coloring of a graph G is a morphism  : G K. The chromatic number (G) of a 

graph G is the minimum number of colors needed to color the vertices of G. If there exists a morphism : 

G H then every coloring  : H  K
n 

of H can be lifted to a coloring of G by the composition 
f c 

G H K
n 
. Hence it follows that (G) (H ) . In particular (G) = (H) whenever I is a retract of 

G. Then it follows: 

Proposition 35. For any graph G. 

H is a retract of G. 

 

[G]) = (G). More generally, ( [G]) = (H) whenever 

The chromatic polynomial (G; ) of a graph G is defined as the polynomial that evaluated in 

any natural number  gives the numbers of proper colorings of G with  colors, that is (G; ) = 

|Hom(G. K
m
)|. 

We now define a hyperoctahedral coloring of G as any morphism : G Hm from G to any 

hyperoctahedral graph. Then the number of hyperoctahedral colorings can be expressed in terms of the 

number of ordinary colorings. Specifically: 

Proposition 36. For any graph G on  vertices. |Hom(G, H
m
) = 2n . (G; ). 

Proof. Lemma 27 and Hm D[Km ] imply that Hom(G, H ) = Hom(G, K ) × 2V(G), 

The clique number x(G) is the size of a maximal clique contained in G. Equivalently x(G) is the 

maximal  such that Hom(K
k
, G) . It follows that x(G) = x(H) whenever H is a retract of G. Hence: 

Proposition 37. For any graph G, x( [G]) = x(G). More generally, x( [G])=x(H) whenever 

H is a retract of G. 

 

H 

( 
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Let now x (G) be the number of all cliques of order  contained in G. Since every morphism 

from K
k 
to G is necessarily injective, it follows that x (G) = (1/k!)|Hom(K

k
,G)|. Then Lemma 27 implies 

the following: 

Proposition 38. For every graph G. x ( [G]) = 2kx (G). 

A graph G is a core when no proper subgraph of G is a retract of G. A retract of G is a core of G 

if it is a core. Every finite graph has a core and it is unique up to isomorphisms [8, p. 114]. A double graph 

is never a core but we have the following: 

Proposition 39. If H is the core of G then it is also the core of [G]. In particular, if G is a core 

then it is the core of [G]. 

Proof. Being a retract of G, H is also a retract of [G]. Since H is a core and every graph has just 

one core, up to isomorphisms, it follows that H is the core of [G]. 

A median of three vertices of a connected graph is a vertex that lies simultaneously on geodesics 

between any two of them. A graph G is a median graph when every triple of (not necessarily distinct) 

vertices of G has a unique median [8,13]. Median graphs are characterized as retracts of hypercubes 

[13, p. 76]. 

Proposition 40. If [G] is a median graph then also G is median. 

Proof. If [G] is a median graph then it is a retract of a hypercube. Since G is a retract of [G], 

by Theorem 32, it follows that it is also a retract of a hypercube. 

In general, however, if G is median it does not necessarily follow that [G] is median. For 

instance the star K
1,3 

is median (being a tree) while its double K
2,6 

is not median (fails the uniqueness of 

median vertices). 

A morphism f : G is full when  adj  if and only if f(v) adj (w), for every ,  V (G). 

We have the following characterization theorem: 

Theorem 41. H is a double graph if and only if there exists a partition π of H in independent 

classes each of size 2 such that the canonical projection p : H / is a full morphism. 

Proof. It immediately follows from the identity [G] G oN2. 

Equivalently we have the following characterization theorem: 

Theorem 42. For every graph G and H. G = [H] if and only if there exists a function 

 

 

f : G 

such that (i) preserves and reflects adjacency (i.e. v1 adj v2 in G if and only if  (v1) adj  (v2) in H. for 

every v1, v2  G), (ii) is 2-regular (i.e. every vertex of H has exactly two preimages). 
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n 

[ k ] 

 

3 

n 

n 

n 1 

n 

n 1 n 

9. An example: the double of generalized Fibonacci cubes 

In this section we will consider a generalization of the motivating example mentioned in the 

Introduction. Let  be a (finite) set of words of a given length over some alphabet. The Hamming graph 

generated by  is the graph with vertex set where two vertices are adjacent if and only if they have 

Hamming distance equal to 1, that is if and only if they differ exactly in one position. 

A -Fibonacci string is a binary string without  consecutive ones. Let [ k ] 

n 
be the set of all - 

Fibonacci strings with length . The generalized Fibonacci cube [ k ] is the Hamming graph generated by 

the F [k] . In particular for = 2 we have the ordinary Fibonacci cube (Fig. 4). 

The binary strings 1010..... and 0101...... with  letters will be called zigzags of length . or 

simply -zigzags. Let W [k ] be the set of all binary strings of length  without -zigzags (as factors). 

Let B
n 

be the set of all binary strings of length . Let : Bn 1 Bn be the function defined by 

(a1a2 .......anan 1 ) b1b2 .....bn , where bi xor(ai , ai for  = 1, 2,..., n. where xor(0, 0) = xor(1, 1)=0 

and xor(0, 1) = xor(1, 0) = 1. Consider now the restriction  of to W [k 1] . Since (1010.....) =111.... 

and (0101....)=111....... it follows that the image of is the set of all binary strings of length  without 

 consecutive 1's, that is the function [ k 1] 

n 1 
F [k 1] is well defined. This function is surjective and 

any element of the codomain has exactly two preimages. Now, instead of considering the Hamming 

graph generated by W [k 1] ,we consider the graph W [k 1] obtained by endowing W [k 1] with the graph 
n 1 n 1 n 1 

structure induced by in order that  becomes a graph morphism between W [k 1] setting w adj w if 
n 1 1 2 

and only if  (w ) adj (w ) in we define the adjacency on W [k 1] By Theorem 42, it immediately follows 
1 2 n 1 

thatW 
[ k 1] 

D[ 
[ k ] 

] . 

10. Chromatic index 

The chromatic index (G) of a graph G is the minimum number of colors needed to color the 

edges of G so that adjacent edges are colored differently. By Vizing's theorem the chromatic index of a 

graph G with maximum degree (G) is equal to  (class  graphs) or +1 (class 2 graphs) [6,11]. 

Since every bipartite graph is of class 1 (König's theorem, [6, p. 25]), it follows that the double of 

a bipartite graph is of class . This result can be generalized as follows. 

Theorem 43. If G is of class  then also [G] is of class . 

Proof. Let  be a proper edge coloring of G using all the colors in a set  of size = (G). The 

coloring  can be represented by the matrix A
c 
obtained from A by replacing every element 

ij 
=1 with the 

color c(i, j) assigned to the edge v
i
v

j 
by . Let ' be a new set of  colors such that C and let 

: C C ' be a bijection. We have a new coloring ' of the edges of G by assigning to the edge v
i
v

j 
the 

 

color '(i, j) = ( (i, j)). Let A
c' 

be the matrix Ac A representing '. Then the matrix 

a proper coloring of the edges of [G] where exactly 2 colors are used. 

represents 

What can be said if G is a class 2 graph? The double is not necessarily of class 2. For instance the 

complete graph K
n 
is of class 2 for n odd but its double H

n 
is of class 1 [6. p. 28]. More generally, the 

1 ) 

' 

C ' 

Ac 

Ac ' 

Ac ' 

Ac 

F 

n 

:W 
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complete -partite graph K
h(k) 

is of class 2 if both  and  are odd and it is of class 1 otherwise [14, 6, p. 

28]. Then for and  odd K
h(k) 

is of class 2 but its double K
h(2k) 

is of class 1. Similarly the cycle C
n 
is of 

class 2 when is odd, but its double K
h(2k)

is of class 1 [19, 6, p. 28). All the eight connected graphs of 

class 2 with at most 6 vertices [6. p. 37] and the Petersen graph have a double of class 1. All the graphs of 

class 2 we considered have a double of class 1. This suggests the possibility that all double graphs are of 

class 1. 
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